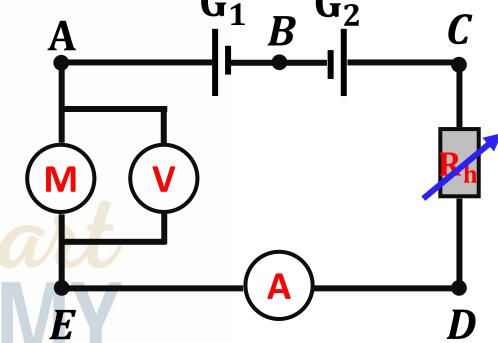
Physics – Grade 10

Unit One – Electricity

Chapter 5 Generator and Receiver


Quiz 1 physic

physics Duration: 20 min

Given $G_1(48V; 2\Omega)$, $G_2(12V; 1\Omega)$, a motor M(E'; r'); and a rheostat R_h , an ammeter and a voltmeter and connected as shown.

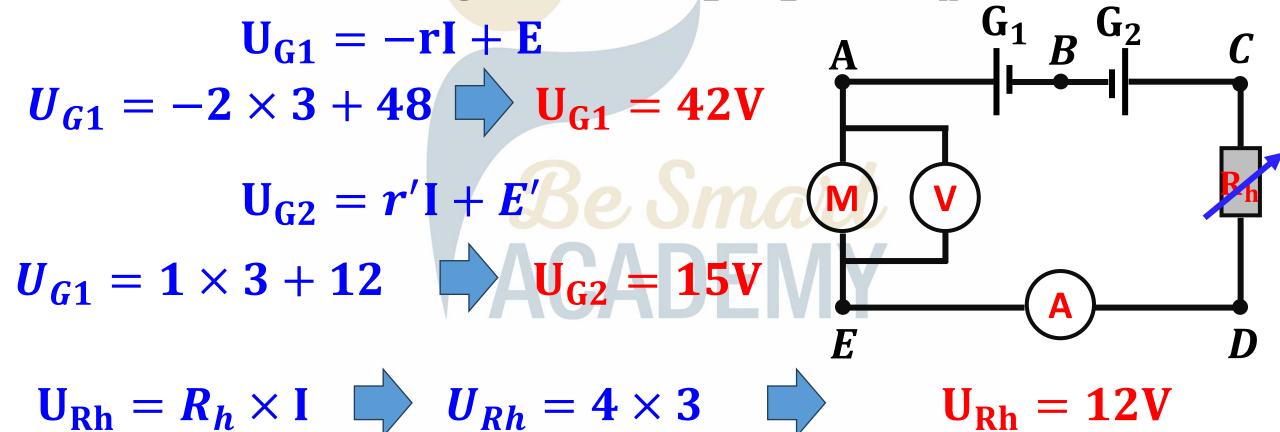
- 1. Specify the role of G_1 and G_2 in the circuit.
- 2.For $R_h = 4\Omega$, the ammeter indicates 3 A. Determine the voltages across G_1 , G_2 and R_h .
- 3. Deduce the voltage U_M across the motor.
- 4. Find a relation between E' and r'.

receiver.

physics

Duration: 20 min

 $G_1(48V; 2\Omega); G_2(12V; 1\Omega); M(E'; r'); and R_h.$

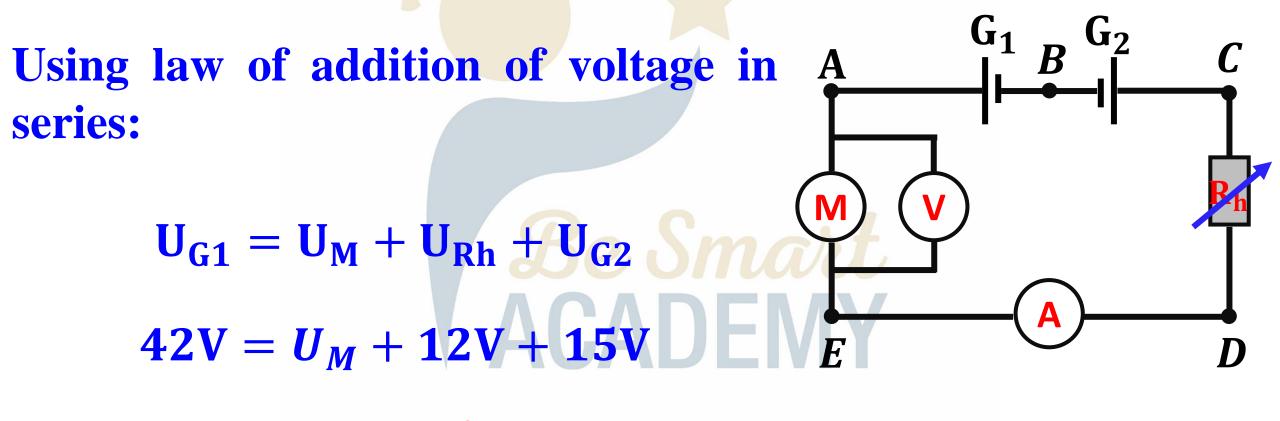

1. Specify the role of G_1 and G_2 in the circuit. The negative pole of G₁ is connected to negative pole of G2 (connected in opposition): G₁ acts as a generator and G₂ acts as

$G_1(48V; 2\Omega); G_2(12V; 1\Omega); M(E'; r'); and R_h.$

For $R_h = 4\Omega$, the ammeter indicates 3 A.

2.Determine the voltages across G₁, G₂ and R_h.

physics

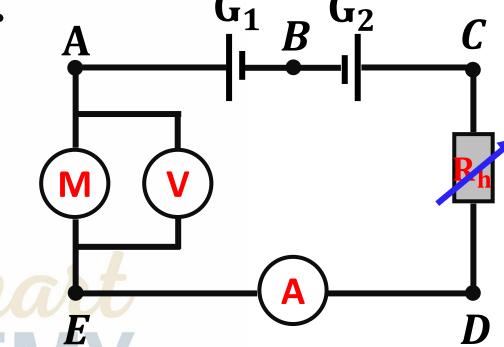

Duration: 20 min

 $G_1(48V; 2\Omega); G_2(12V; 1\Omega); M(E'; r'); and R_h.$

3. Deduce the voltage U_M across the motor.

 $U_M = 15V$

 $G_1(48V; 2\Omega); G_2(12V; 1\Omega); M(E'; r'); and R_h.$


4. Find a relation between E' and r'.

The motor is a receiver then:

Use ohm's law of receiver:

$$U_{M} = r'I + E'$$

$$15V = 3 \times r' + E' \dots (1)$$

Quiz 1 **Duration: 20 min** physics 5. For $R_h = 8\Omega$, the ammeter indicates 2 A, and the voltmeter indicates 14 V. a) Determine a relation between E'and r'. b) Determine the back e.m.f. (E') and the internal resistance (r') of the motor.

c) Does the motor functions normally? Justify your answer.

 $G_1(48V; 2\Omega); G_2(12V; 1\Omega); M(E'; r'); and R_h.$

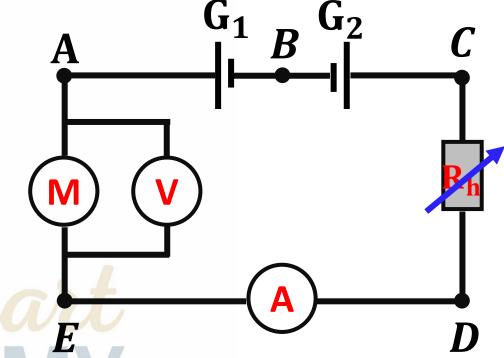
5. For $R_h = 8\Omega$, I = 2A, $U_M = 14V$. a) Determine a relation between E' and r'.

Using ohm's law of receiver:

$$\mathbf{U}_{\mathbf{M}} = \mathbf{r}'\mathbf{I} + \mathbf{E}'\mathbf{S}e \mathbf{S}ma_{\mathbf{E}}\mathbf{I}$$

$$14V = 2 \times r' + E' \dots (2)$$

Duration: 20 min



$G_1(48V; 2\Omega); G_2(12V; 1\Omega); M(E'; r'); and R_h.$

6.Determine the back e.m.f. (E') and the internal resistance (r') of the motor.

$$\begin{cases} 15V = 3r' + E' \dots (1) \\ 14V = 2r' + E' \dots (2) (-1) \end{cases}$$

$$\begin{cases} 15V = 3 \times r' + E' - C \\ -14V = -2 \times r' - E' \end{cases}$$

physics

Duration: 20 min

$$\begin{cases} \mathbf{15V} = \mathbf{3} \times \mathbf{r}' + \mathbf{E}' \\ -\mathbf{14V} = -\mathbf{2} \times \mathbf{r}' - \mathbf{E}' \end{cases}$$

Add the above two equations:

$$15V - 14V = 3r' + E' - 2r' - E'$$

$$1 = r' \qquad \qquad r' = 1\Omega$$

Substitute $r' = 1\Omega$ in any of the above equations:

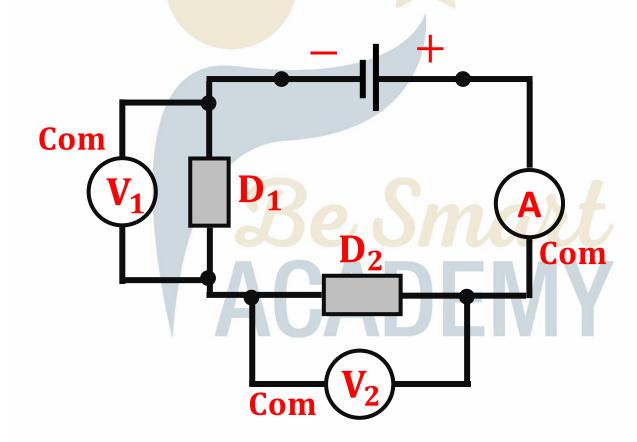
$$15V = 3 \times r' + E'$$

$$15V = 3 \times (1) + E'$$

$$50015V = 3 + E'$$

$$UE[V]_{15} - 3 = E'$$

$$E' = 12V$$



physics

Duration: 15 min

To know the nature of two electric loads D_1 and D_2 we connect them in series with DC generator of electromotive force E and internal resistance $r = 2\Omega$.

physics

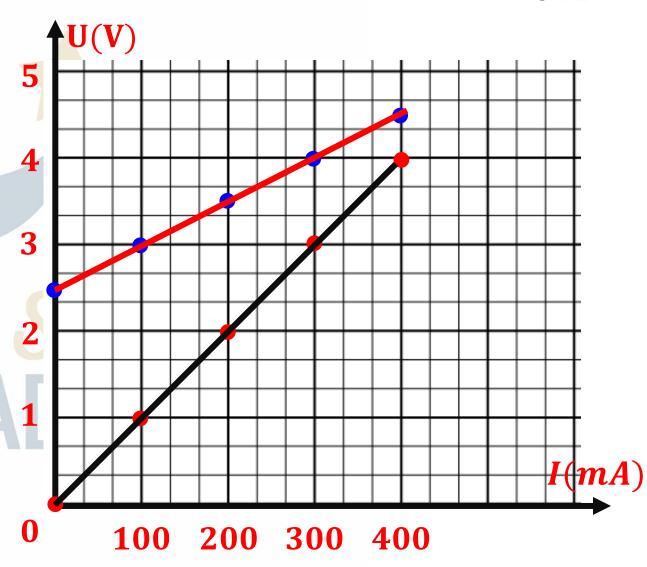
Duration: 15 min

Two voltmeters V_1 and V_2 are connected across the terminals of D1 and D2 and an ammeter A is connected as shown in the figure. The table below represents the readings of V_1 , V_2 and A.

I (mA)	0	100	200	300	400
V ₁ (V)	0	Bed	Sm²ari	3	4
V ₂ (V)	2.5	A3A	3.5	4	4.5

- 1.Trace the I-V characteristic curves of the two
- electric loads D_1 , and D_2 .
- Scale: x axis: $1cm \rightarrow 0.1A & y axis$: $1cm \rightarrow 1V$
- 2.Indicate with justification the nature of the electric loads D_1 , and D_2 .
- 3. Find the equations of the two graphs that correspond to D_1 , and D₂
- 4. Deduce the characteristics of D_1 , and D_2 .
- 5. For I = 0.3A. Determine, by applying the law of addition of voltages, the value of E of the generator.

physics


Duration: 15 min

Be Smart ACADEMY

1. Trace the I-V characteristic curves of the two

electric loads D₁ and D₂

I (mA)	0	100	200	300	400
<i>V</i> ₁ (V)	0	1	2	3	4
<i>V</i> ₂ (V)	2.5	3	3.5	4	4.5

Quiz 2 physics

Duration: 15 min

2. Indicate with justification the nature of the electric loads D_1 , and D_2 .

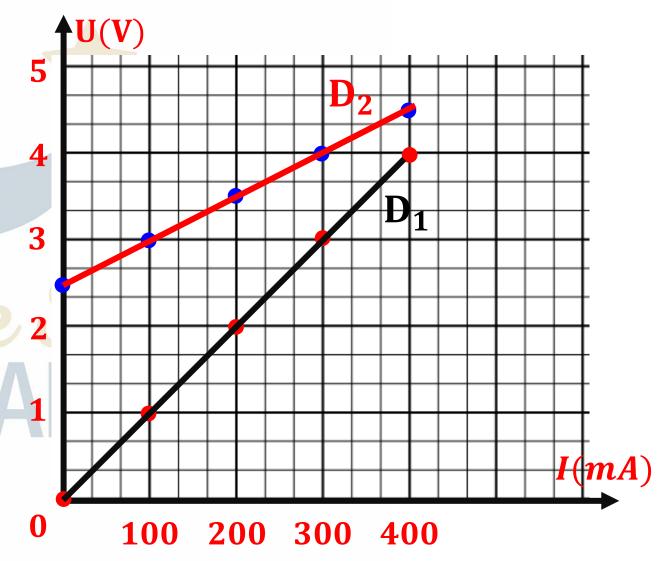
 D_1 is a resistor, since the shape of its graph is a straight line passing through the origin.

D₂ is a receiver, since the shape of its graph is an increasing straight line and NOT passing by origin.

3. Find the equations of the two graphs that correspondent

 D_1 , and D_2

For D_1 : The equation is:


U = aI; where a is slope.

$$a = \frac{U_2 - U_1}{I_2 - I_1} = \frac{2 - 1}{0.2 - 0.1}$$

$$a = 10V / A$$

The equation is:

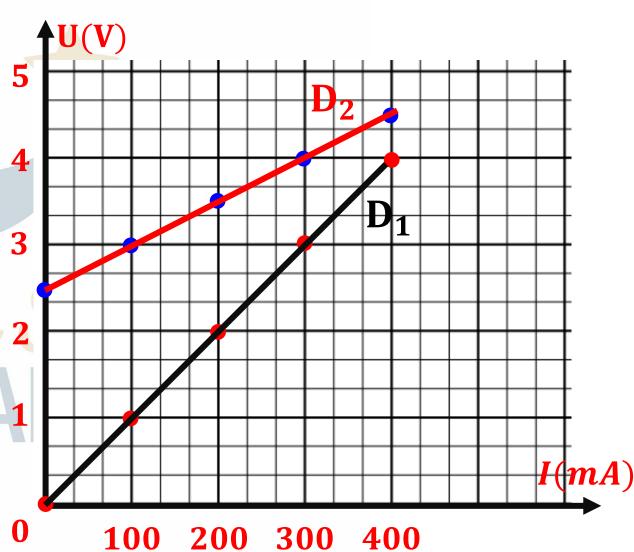
$$U = 10I$$

physics

Duration: 15 min

For D_2 : The general equation is U = a. I + b; with k is slope

$$a = \frac{U_2 - U_1}{I_2 - I_1} = \frac{4.5 - 4}{0.2 - 0.1}$$


$$a = 5V/A$$

b is y- intercept

$$b = 2.5V$$

The equation is:

$$U = 5.I + 2.5$$

4. Deduce the characteristics values of D_1 , and D_2 .

D₁ is resistor with equation:

$$U = 10I$$

The ohm's law of resistor is

$$U = R.$$

Compare the two equations:

$$R = 10\Omega$$

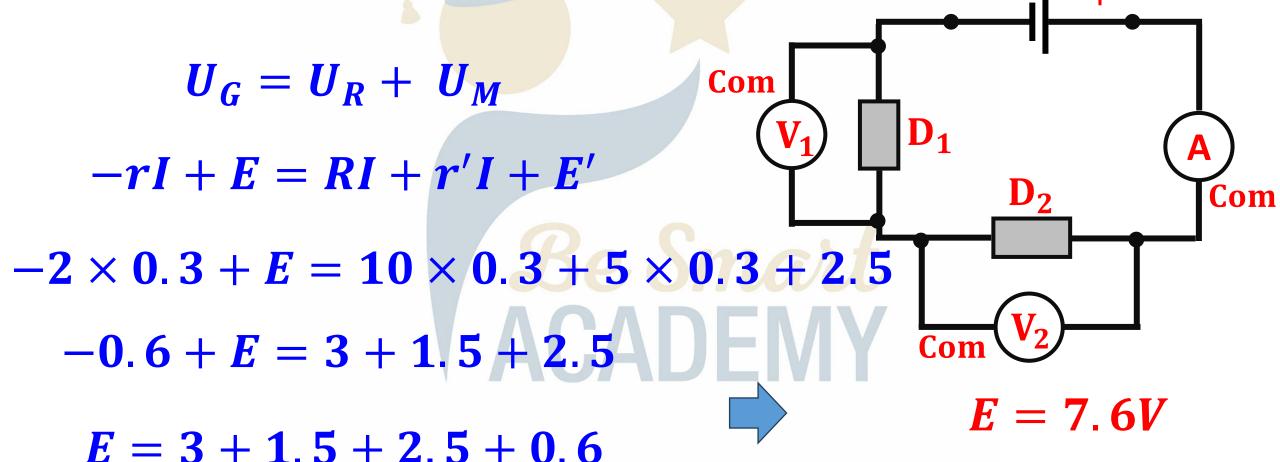
D₂ is a receiver with equation:

$$U = 5.I + 2.5$$

The ohm's law of receiver is

$$U = r' I + E'$$

Compare the two equations:


$$\mathbf{r}' = \mathbf{5}\Omega$$

$$E'=2.5\Omega$$

5. For I=0.3A. Determine, by applying the law of

addition of voltages, the value of E of the generator.

